WT1 proteins: functions in growth and differentiation.
نویسندگان
چکیده
The Wilms' tumor 1 gene (WT1) has been identified as a tumor suppressor gene involved in the etiology of Wilms' tumor. Approximately 10% of all Wilms' tumors carry mutations in the WT1 gene. Alterations in the WT1 gene have also been observed in other tumor types, such as leukemia, mesothelioma and desmoplastic small round cell tumor. Dependent on the tumor type, WT1 proteins might either function as tumor suppressor proteins or as survival factors. Mutations in the WT1 gene can also result in congenital abnormalities as observed in Denys-Drash and Frasier syndrome patients. Mouse models have proven the critical importance of WT1 expression for the development of several organs, including the kidneys, the gonads and the spleen. The WT1 proteins seem to perform two main functions. They regulate the transcription of a variety of target genes and may be involved in post-transcriptional processing of RNA. The WT1 gene encodes at least 24 protein forms. These isoforms have partially distinct biological functions and effects, which in many cases are also specific for the model system in which WT1 is studied. This review discusses the molecular mechanisms by which the various WT1 isoforms exert their functions in normal development and how alterations in WT1 may lead to developmental abnormalities and tumor growth.
منابع مشابه
Proteomics analysis of siRNA-mediated silencing of Wilms' tumor 1 in the MDA-MB-468 breast cancer cell line.
The Wilms' tumor 1 (WT1) gene encodes a zinc finger which appears to be a transcriptional activator or repressor for many genes involved in cell differentiation, growth and apoptosis. In order to determine the relationship between WT1 and related proteins, WT1 was silenced with small interfering RNA (siRNA) and the protein expression pattern was analyzed by proteomics analysis including one-dim...
متن کاملDifferential regulation of the Wilms' tumor gene, WT1, during differentiation of embryonal carcinoma and embryonic stem cells.
The expression pattern of the Wilms' tumor suppressor gene, WT1, during embryonal development suggests a role for the WT1 proteins in the differentiation of specific tissues. This notion is supported by the observation that WT1 knock-out mice fall to develop kidneys and gonads. We describe here the changes in the expression and DNA binding activity of the WT1 gene product in P19 embryonal carci...
متن کاملWilms' tumor gene, WT1, mRNA is down-regulated during induction of erythroid and megakaryocytic differentiation of K562 cells.
Evidence implicates the product of the Wilms' tumor suppressor gene, WT1, in proliferation and differentiation of target tissues during development. Study of the regulation of other tumor suppressor genes during these processes has been instrumental in defining their interactions and functions. In this study, we performed experiments to assess the suitability of the human K562 erythroleukemia c...
متن کاملThe Wilms' Tumor Suppressor Protein WT1 Is Processed by the Serine Protease HtrA2/Omi
The Wilms' tumor suppressor protein WT1 functions as a transcriptional regulator of genes controlling growth, apoptosis, and differentiation. It has become clear that WT1 can act as an oncogene in many tumors, primarily through the inhibition of apoptosis. Here, we identify the serine protease HtrA2 as a WT1 binding partner and find that it cleaves WT1 at multiple sites following the treatment ...
متن کاملPhysical interaction between Wilms tumor 1 and p73 proteins modulates their functions.
The WT1 gene, which is heterozygously mutated or deleted in congenital anomaly syndromes and homozygously mutated in about 15% of all Wilms tumors, encodes tissue-specific developmental regulators. Through alternative mRNA splicing, four main WT1 protein isoforms are synthesized. All isoforms can bind to DNA via their zinc fingers, albeit with different affinities and specificities, and thereby...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 273 2 شماره
صفحات -
تاریخ انتشار 2001